2000字范文,分享全网优秀范文,学习好帮手!
2000字范文 > 这篇文章告诉你 如何用阅读理解来做NER!

这篇文章告诉你 如何用阅读理解来做NER!

时间:2023-05-10 05:29:31

相关推荐

这篇文章告诉你 如何用阅读理解来做NER!

点击下面卡片关注我呀,每天给你送来AI技术干货!

作者:林哲乐

之前做过实体关系抽取/联合抽取等任务,是用LSTM+CRF模型+BIO标注的方法,最近看到有一篇ACL用MRC(Machine Reading Comprehension)的方法去做NER(Named Entity Recognition)任务,以下是对这篇论文的分享。

Paper: A Unified MRC Framwork for Name Entity Recognition

Code: /ShannonAI/mrc-for-flat-nested-ner

摘要

NER任务分为:

1.nested NER(嵌套命名实体识别,一个实体可能属于多个类型,如北京大学中的北同时属于 B-Location,也属于 B-Organization;而京也拥有 I-Location 与 I-Organization 两个标签。)

2.flat NER (普通命名实体识别,将实体识别看作序列标注任务来解决,不适用于存在实体嵌套的情况)

本文提出的统一化MRC框架则同时解决了上述两种类型的任务。如:

原任务:提取一个PER(PERSON)类型的实体

演变成:获取“文中提到了哪个人?”问题答案所在段(定位答案所在的span)

相当于把提取两个重叠的实体,转化成:回答两个独立的问题。

另外由于问题中对先验知识进行了编码,本文策略其实就相当于利用了实体提取的过程,在嵌套和非嵌套的NER任务上都能v表现更佳。

本文对nested NER和flat NER的实验,分别采用不同的数据集

1. 引言

命名实体识别:从大段文字中识别一小段span、实体的类别

根据实体是否嵌套,分为嵌套命名实体识别nested NER(如下图)、普通命名实体识别flat NER

(上图中,实体[Chinese embassy in France]中还有两个实体[Chinese]和[France] )

2. 相关工作

2.1 NER(Named Entity Recognition)

从开始,传统的序列标注模型使用CRF作为主干,如LSTM-CRF、CNN-CRF、BiLSTM-CRF,最近的模型就是在之前的模型上加了BERT或者ELMo等预训练模型

2.2 Nested NER

重叠实体的识别还采用手工定义的规则,提出两层CRF模型解决Nested NER的问题,第一层CRF识别最里层的实体,后续的CRF识别第二层/外层的实体。提出的模型基于语法树,假设两个重叠实体中,一个是完全包含另一个的。:超图。:本地分类器。:分层的方式。:ARNs (Anchor-Region Networks)。

今年来,多加入预训练模型如BERT或者ELMo,Strakova等将NER看作seq2seq的生成问题。

2.3 MRC(Machine Reading Comprehension)

MRC模型是对于给出的一个问题Q在文本中提取答案所在的小段span,可以将此任务看作是两个多分类任务,比如预测答案span的开始位置和结束位置。近两年有将NLP任务转化为MRC问答的趋势,例如:关系类型 可以表示为答案为 的问题 。

3. NER as MRC

3.1 任务形式化定义

给一个长度为n的序列:我们的目标是从X中获取实体,且实体类别为y∈Y 。y的可能取值有 PER、LOC等等

本文训练需要的是一些已标注实体的数据集,形式为三元组:

其中长度为m的问题 记作

被标记的实体 记作(是序列X的子序列):

实体类型(即标签)记作 ,有:

则我们最终得到的是

3.2 问题生成

另外,我们需要根据需要获取的实体类型,生成一些问题,如下图:

3.3 模型细节

3.3.1 模型主干

给出问题 ,我们需要从 中提取实体 ,及其类型标签 。将BERT作为我们MRC模型的主干,而将 和 结合起来作为输入序列

此时BERT接收到我们的序列,输出一个上下文向量矩阵

其中d是BERT最后一层的维度,一般d=768

3.3.2 跨度选择

MRC中跨度选择(span selection)的方法有两种:

用2个n类分类器,分别预测start下标和end下标;但是此方法只能定位一个span

用2个二分类器,每个分类器都判断某个分类器是否为start/end,这样可以输出多个start/end,再进行组合;此方法可以定位多个span

(跨度选择的整个过程是:得到start下标,得到end下标,匹配跨度)

本文采用上述第二种方法,得到BERT的输出 ,预测某个下标是否为start下标的概率:

其中 为可学习的参数。end下标的预测概率同上式。

在上下文 中,同类实体可能有多个,即有多个start和多个end。由于存在重叠,最近的end下表不一定和start下标对应,则本文采取的办法是:

其中,上标代表第 i 行,则start和end匹配的概率预测表示为:

3.4 训练与测试

训练时, 有两组标签: 和 ,则我们的损失可以表示为:

则整个span的损失表示为:

则整体的训练目标为最小化下式:

其中

上述三个损失在端到端网络中联合训练。

测试时,start和end首先分开,然后再用排列的方法来定位跨度段span

4. 实验

4.1 Nested NER的实验

baselines:

Hyper-Graph、Seg-Graph、ARN等,后面表格会有对比

实验结果:

4.2 Flat NER的实验

baseline及实验结果:

5. 消融实验

5.1 在MRC或BERT上的提升

一方面MRC编码了先验知识,另一方面性能的提升确实有可能来自大规模模型BERT

为了验证BERT的效果,我们对比LSTM-CRF和其他MRC模型(QAnet、BiDAF等),如下:

可以看出,即便不用BERT,QAnet和BiDAF依然表现比LSTM-CRF好。

而MRC的效果提升在于,对于只用BERT的模型,BERT-MRC的性能提升了1.95%。

我们画出了BiDAF模型输出的注意力矩阵,如下图:

通过上图,上下文和标记的分类标签之间的相似度可以更好的体现出来,如Flevland和geographical、cities和state.

5.2 如何使用问句

我们采用不同的方法使用问句,并观察问句的影响,对比如下图:

Position index of labels:使用标签的索引构造查询

Keyword :查询的是类别标签,例如,标签ORG的问题查询是“organization”

Rule-based template filling:生成问题需要使用模板

Wikipedia:查询是使用维基百科的定义

Synonyms:与使用牛津词典提取的原始关键字完全或几乎相同

Keyword+Synonyms:连接关键字及其同义词

Annotation guideline notes:注释指南注释,也是本文使用的方法

5.3 在看不见的标签上的零次学习(Zero-shot)

零次学习(Zero-shot):在一个数据集上训练好的模型,在另一个数据集上测试

训练数据:CoNLL 测试数据:OntoNotes5.0

OntoNotes5.0有18种实体类型,其中有3种和CoNLL03中的实体类型一样

如上图所示,不采用零次学习时,两个模型的性能差别不大。在零次学习的情况下,BERT-tagger只达到F1值31.87;而BERT-MRC在新的数据集上却能达到F1值72.34

5.4训练集大小

由于问句编码了大量的先验知识,我们期望所提出的框架在较少训练的情况下工作得更好。

在ChineseOntoNotes4.0训练集上,基于BERT-MRC方法只用一半的训练数据,技能达到性能与BERT-tagger相当。如下图所示:

6. 结论

本文将NER任务转化为MRC下的问答任务,好处有:

可以处理重叠或嵌套的实体

问题编码了重要的先验知识

同时在nested和flat数据上都取得了SOTA的效果

投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

点击上面卡片,关注我呀,每天推送AI技术干货~

整理不易,还望给个在看!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。