2000字范文,分享全网优秀范文,学习好帮手!
2000字范文 > 局部线性嵌入LLE

局部线性嵌入LLE

时间:2021-07-31 09:16:34

相关推荐

局部线性嵌入LLE

[1]/pinard/p/6266408.html

[2]Graph Embedding Techniques, Applications, and Performance: A Survey

主要参考和图片来源[1]

LLE推导算法流程

局部线性嵌入(Locally Linear Embedding,LLE),一种重要降维方法,与PCA、LDA相比,更注重保持样本局部线性特征,常用语图像识别、高维数据可视化等。

数学意义上的流形:一个不闭合曲面,曲面上数据分布均匀,特征比较稠密,流形降维就是把流形从高维到低维的降维过程,并在降维中保留流形高维的特征。

我的理解:数据分布于高维的一个曲面,流行学习就是将这个曲面降维展开表达出来

LLE

LLE假设数据在较小的局部是线性的,即样本x1x1可以由K个近邻样本x2,x3,x4x2,x3,x4线性表示

x1=w12x2+w13x3+w14x4x1=w12x2+w13x3+w14x4

则希望降维之后依然保持这种线性关系

x′1≈w12x′2+w13x′3+w14x′4x1′≈w12x2′+w13x3′+w14x4′

由于只考虑了局部线性关系,所以复杂度低很多

LLE推导

首先设定邻域大小k,然后寻找某个样本与近邻样本的线性关系,即权重系数。

假设有m个n维样本{x1,x2,...,xm}{x1,x2,...,xm},则有损失函数

J(w)=∑i=1m‖xi−∑j=1kwijxj‖22J(w)=∑i=1m‖xi−∑j=1kwijxj‖22

对权重系数有归一化限制

∑j=1kwij=1∑j=1kwij=1

对损失函数矩阵化

J(W)=∑i=1m‖xi−∑j=1kwijxj‖22=∑i=1m‖∑j=1kwijxi−∑j=1kwijxj‖22=∑i=1m‖∑j=1kwij(xi−xj)‖22=∑i=1mWTi(xi−xj)T(xi−xj)WiJ(W)=∑i=1m‖xi−∑j=1kwijxj‖22=∑i=1m‖∑j=1kwijxi−∑j=1kwijxj‖22=∑i=1m‖∑j=1kwij(xi−xj)‖22=∑i=1mWiT(xi−xj)T(xi−xj)Wi

其中Wi=(wi1,wi2,...,wik)TWi=(wi1,wi2,...,wik)T

表示局部协方差Zi=(xi−xj)T(xi−xj)Zi=(xi−xj)T(xi−xj)

则简化为

J(W)=∑i=1mWTiZiWiJ(W)=∑i=1mWiTZiWi

对约束有

∑j=1kwij=WTi1k=1∑j=1kwij=WiT1k=1

其中1k为k维全1向量

则拉格朗日乘子法:

L(W)=∑i=1mWTiZiWi+λ(WTi1k−1)L(W)=∑i=1mWiTZiWi+λ(WiT1k−1)

对W求导取0得

2ZiWi+λ1k=02ZiWi+λ1k=0

Wi=λ′Z−1i1kλ′=−12λWi=λ′Zi−11kλ′=−12λ

利用约束做归一化有

Wi=Z−1i1k1TkZ−1i1kWi=Zi−11k1kTZi−11k

注:把1Tk挪到左边就对上了。。。1kT挪到左边就对上了。。。

至此,获得高维的权重系数,希望权重系数保持。设定n维样本集{x1,x2,...,xm}{x1,x2,...,xm}在低维的d维度投影为{y1,y2,...,ym}{y1,y2,...,ym},希望保持线性关系且均方差损失函数最小,则最小化损失函数

J(y)=∑i=1m‖yi−∑j=1kwijyj‖22J(y)=∑i=1m‖yi−∑j=1kwijyj‖22

区别在于高维的时候是求权重系数W,低维时是求低位数据Y

为了得到标准化低维数据,加入约束条件

∑i=1myi=0;1m∑i=1myiyTi=I∑i=1myi=0;1m∑i=1myiyiT=I

将目标损失函数矩阵化

J(Y)=∑i=1m‖yi−∑j=1kwijyj‖22=∑i=1m‖YIi−YWi‖22=tr(YT(I−W)T(I−W)Y)J(Y)=∑i=1m‖yi−∑j=1kwijyj‖22=∑i=1m‖YIi−YWi‖22=tr(YT(I−W)T(I−W)Y)

令M=(I−W)T(I−W)M=(I−W)T(I−W),则最小化J(Y)=tr(YTMY)J(Y)=tr(YTMY),约束函数矩阵化为YTY=mIYTY=mI

通过拉格朗日函数得到

L(Y)=tr(YTMY)+λ(YTY−mI)L(Y)=tr(YTMY)+λ(YTY−mI)

求导取0得到

2MY+2λY=02MY+2λY=0

则求出矩阵M的最小的d个特征值所对应的d个特征向量组成矩阵Y=(y1,y2,...,yd)Y=(y1,y2,...,yd)

注,一般最小的特征值为0不能反映数据特征,因此取[1,d+1]小的特征值的特征向量。(这里因为最小化目标,所以取小的特征值)

算法流程

总结一波流程:K近邻=>算权重系数=>算降维后的矩阵

LLE算法的主要优点有:

1)可以学习任意维的局部线性的低维流形

2)算法归结为稀疏矩阵特征分解,计算复杂度相对较小,实现容易。

LLE算法的主要缺点有:

1)算法所学习的流形只能是不闭合的,且样本集是稠密均匀的。

2)算法对最近邻样本数的选择敏感,不同的最近邻数对最后的降维结果有很大影响。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。