2000字范文,分享全网优秀范文,学习好帮手!
2000字范文 > 神经网络模型的模型假设 人工神经网络预测模型

神经网络模型的模型假设 人工神经网络预测模型

时间:2023-12-04 16:00:51

相关推荐

神经网络模型的模型假设 人工神经网络预测模型

神经网络可以用来预测时间序列吗

神经网络是可以用来预测时间序列。例如神经网络人口预测。

已知1990至的某地区人口数[112830424456496050635674766592105124117132128]。

预测-的某地区人口数。

具体实施过程:%已知数据t=1990:;x=[112830424456496050635674766592105124117132128];%自回归阶数lag=3;%预测步数为fnfn=length(t);%输出数据[f_out,iinput]=BP(x,lag,fn);%BP()神经网络预测函数[x'iinput']R2=corrcoef(x,iinput)%预测年份或某一时间段%t1=:;t1=length(x)+1:length(x)+7;%预测步数为fnfn=length(t1);[f_out,iinput]=BP(x,lag,fn);P=vpa(f_out,5);%预测数据t1=:;[t1'P']%画出预测图figure(6),plot(t,x,'b*-'),holdonplot(t(end):t1(end),[iinput(end),f_out],'rp-'),gridontitle('BP神经网络预测某地区人口数')xlabel('年份'),ylabel('人口数');legend('-人口变化数','-人口预测数');。

谷歌人工智能写作项目:神经网络伪原创

时间序列模型和神经网络模型有何区别?

预测模型可分为哪几类?

根据方法本身的性质特点将预测方法分为三类。1、定性预测方法根据人们对系统过去和现在的经验、判断和直觉进行预测,其中以人的逻辑判断为主,仅要求提供系统发展的方向、状态、形势等定性结果。

该方法适用于缺乏历史统计数据的系统对象。2、时间序列分析根据系统对象随时间变化的历史资料,只考虑系统变量随时间的变化规律,对系统未来的表现时间进行定量预测。

主要包括移动平均法、指数平滑法、趋势外推法等。该方法适于利用简单统计数据预测研究对象随时间变化的趋势等。

3、因果关系预测系统变量之间存在某种前因后果关系,找出影响某种结果的几个因素,建立因与果之间的数学模型,根据因素变量的变化预测结果变量的变化,既预测系统发展的方向又确定具体的数值变化规律。

扩展资料:预测模型是在采用定量预测法进行预测时,最重要的工作是建立预测数学模型。预测模型是指用于预测的,用数学语言或公式所描述的事物间的数量关系。

它在一定程度上揭示了事物间的内在规律性,预测时把它作为计算预测值的直接依据。因此,它对预测准确度有极大的影响。任何一种具体的预测方法都是以其特定的数学模型为特征。

预测方法的种类很多,各有相应的预测模型。趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。

趋势外推法的假设条件是:(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。

(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。

简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。趋势外推预测法主要利用描绘散点图的方法(图形识别)和差分法计算进行模型选择。

主要优点是:可以揭示事物发展的未来,并定量地估价其功能特性。趋势外推预测法比较适合中、长期新产品预测,要求有至少5年的数据资料。组合预测法是对同一个问题,采用多种预测方法。

组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。

组合预测有2种基本形式,一是等权组合,即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。

这2种形式的原理和运用方法完全相同,只是权数的取定有所区别。根据经验,采用不等权组合的组合预测法结果较为准确。回归预测方法是根据自变量和因变量之间的相关关系进行预测的。

自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。

回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。参考资料:百度百科——预测模型参考资料:百度百科——定性预测。

运用AR模型进行预测与人工神经网络进行预测的区别在哪里?

AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。

而用人工神经网络进行预测,构建的网络模型是一种非线性函数,推算出预测值。在速度上比AR慢,但是每个数据可以有几个数据点组成,而AR只能是每个数据有一个数据点。

卷积神经网络能用于参数预测吗

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

BP神经网络在地面沉降预测中的应用

地面沉降是多种自然和人为因素共同作用的结果。

各种要素发生作用的时空序列、影响强度和方向以及它们之间的关系处于不断变化之中,同时各因素的变化及其影响并不是单方面的,各变量之间相互形成制约关系,这使得地面沉降过程极具复杂性。

因此,要求预测模型能以在现有资料、信息基础,准确反映研究区的自然背景条件、地下水开采行为与地面沉降过程之间的复杂联系,并能识别和适应不同影响因素随时间发生的改变。

BP神经网络作为一个非线性系统,可用于逼近非线性映射关系,也可用于逼近一个极为复杂的函数关系,是解释和模拟地面沉降等高度复杂的非线性动力学系统问题的一种较好的方法。

8.4.1.1训练样本的确定根据第4章的分析,影响研究区域地面沉降过程的变量包含着复杂的自然和人为因素,超采深层地下水是造成研究区1986年以后地面沉降的主要原因,深层地下水的开采量和沉降监测点附近的各含水层组水位均与地面沉降有着很好的相关性。

本区第四系浅层地下水系统(第Ⅰ含水层组)除河漫滩地段,一般为TDS都高于2g/L的咸水,因此工农业用途较少,水位一般保持天然状态,在本次模型研究中不予考虑。

由于区内各地面沉降监测点的地面高程每年测量一次,为了保持与地面沉降数据的一致性,使神经网络模型能准确识别地下水开采与地面沉降之间的关系,所有数据均整理成年平均的形式。

本章选择了控沉点处深层地下水系统的年均水位和区域地下水开采量作为模型的输入变量,考虑到水位和开采量的变化与沉降变形并不同步,有明显的滞后性存在,本章将前一年的开采量和年均水位也作为输入,故模型的输入变量为四个。

以收集到的区内每个地面沉降监测点的年沉降量作为模型的输出变量,通过选择适合的隐含层数和隐层神经单元数构建BP模型,对地面沉降的趋势进行预测。

本次收集到的地面沉降监测点处并未有常观孔的水位数据,如果根据历年实测等水位线推算,会产生很大的误差,导致预测结果的不稳定性。

基于已经建立好的Modflow数值模型,利用ProcessingModflow软件里的水井子程序包,在控沉点处设置虚拟的水位观测井,通过软件模拟出的不同时期的水位,作为地面沉降神经网络模型的输入层,从而避免了以往的将各含水层组平均水位作为模型输入所带来的误差[55]。

考虑到深层地下水系统各含水层组的水力联系较为密切,本次在每个地面沉降监测点处只设置一个水位观测井,来模拟深层地下水系统的水位。

水井滤水管的起始位置与该点含水层的位置相对应,即滤水管的长度即为含水层的厚度。观测井在模型中的位置如8.31所示,绿色的点即为虚拟水位观测井。

从图中可以看出6个沉降点在研究区内分布均匀,处于不同的沉降区域,有一定的代表性,通过对这6个点的地面沉降进行预测,可以反映出不同区域的沉降趋势。数值模型模拟得到的各沉降点年均水位如图8.32所示。

图8.31控沉点虚拟水井在Modflow数值模型中的分布示意图图8.32模拟得到的各沉降点处虚拟水井年均水位动态8.4.1.2样本数据的预处理由于BP网络的输入层物理量及数值相差甚远(不属于一个数量级),为了加快网络收敛的速度,在训练之前须将各输入物理量进行预处理。

数据的预处理方法主要有标准化法、重新定标法、变换法和比例放缩法等等。

本章所选用的是一种最常用的比例压缩法,公式为[56]变环境条件下的水资源保护与可持续利用研究式中:X为原始数据;Xmax、Xmin为原始数据的最大值和最小值;T为变换后的数据,也称之为目标数据;Tmax、Tmin为目标数据的最大值和最小值。

由于Sigmoid函数在值域[0,0.1]和[0.9,1.0]区域内曲线变化极为平坦,因此合适的数据处理是将各输入物理量归至[0.1,0.9]之间。

本章用式(8.7)将每个样本输入层的4个物理量进行归一化处理变环境条件下的水资源保护与可持续利用研究处理后的数据见表8.14。

表8.14BP神经网络模型数据归一化表续表8.4.1.3网络结构的确定BP神经网络的建立,其重点在于网络结构的设计,只要隐层中有足够多的神经元,多层前向网络可以用来逼近几乎任何一个函数。

一般地,网络结构(隐层数和隐层神经元数)和参数(权值和偏置值)共同决定着神经网络所能实现的函数的复杂程度的上限。结构简单的网络所能实现的函数类型是非常有限的,参数过多的网络可能会对数据拟合过度。

本章将输入样本的个数定为4个,输出样本为1个。

但是对于隐含层数及隐含层所含神经元个数的选择,到目前为止还没有明确的方法可以计算出实际需要多少层或多少神经元就可以满足预测精度的要求,在选择时通常是采用试算的方法[56,57]。

为了保证模型的预测精度和范化能力,根据收集到的资料的连续性,本次研究利用1988~2002年15组地面沉降历史观测数据和对应的当年及前一年的开采量、年均水位组织训练,以和的实测地面沉降数据校验模型的预测能力,尝试多种试验性网络结构,其他模型参数的选择采取保守方式,以牺牲训练速度换取模型稳定性。

以和的平均相对误差均小于20%作为筛选标准,最终选择三层BP网络作为模型结构,隐层神经元的个数设置为3。网络结构如图8.33所示,参数见表8.15。

表8.15BP网络模型参数一览表图8.33神经网络模型结构图8.4.1.4网络的训练与预测采用图8.33确定的网络结构对数据进行训练,各个沉降点的训练过程和拟合效果如图8.34、图8.35所示。

从图8.35可以看出,训练后的BP网络能很好地逼近给定的目标函数。说明该模型的泛化能力较好,模拟的结果比较可靠。

通过该模型模拟了6个沉降点在和的沉降量(表8.16),可以看出和模拟值和实际拟合较好,两年的平均相对误差均小于20%,说明BP神经网络可以用来预测地面沉降的趋势。

表8.16监测点年沉降量模拟误差表图8.34各沉降点训练过程图8.4.1.5模型物理意义探讨虽然现今的BP神经网络还是一个黑箱模型,其参数没有水文物理意义[58]。

但从结构上分析,本章认为地面沉降与ANN是同构的。

对于每个控沉点来说,深层地下水系统的开采量和含水层组的水位变化,都会引起地层应力的响应,从而导致整体的地面标高发生变化,这一过程可以与BP神经网络结构进行类比。

其中,深层地下水系统的3个含水层组相当于隐含层中的3个神经元,各含水层组对地面沉降的奉献值相当于隐含层中人工神经元的阈值,整体上来说,本次用来模拟地面沉降的BP神经网络结构已经灰箱化(表8.17)。

图8.35各监测点年沉降量神经网络模型拟合图表8.17BP神经网络构件物理意义一览表。

使用神经网络用matlab进行建模,最后的权重值要输出么,怎么输出?得出的模型怎么用来验证和预测? 20

得出的权值要回赋给这个神经网络,权值就好像黑匣子里边的未知的东西,你通过训练数据得到最佳权值后把它赋给这个黑匣子,黑匣子就成了已知得了,给它一组输入运行就会有相应的输出y,这个输出是我们预测的,需要跟实际的输出比较得出误差,误差大证明系统模型不好,误差小说明系统模型更接近真实的系统,至于权值怎么赋给模型,网上有代码,粒子群优化bp神经网络,遗传算法优化神经网络的都有,我也是看了一段时间,理解的不深刻,建模主要是通过已知的输入输出数据训练网络的权值和阈值,我现在在学习锅炉系统建模和优化,大家可以一起交流学习qq191991427。

BP神经网络评价和预测有什么不同

前者是知道测试输出的,通过训练好的网络模型来预测输出,然后与真实输出对比,来评价网络好与坏。

例如对函数y=x^2在[-1:0.1:1]区间训练,通过BP网络测试[0.4:0.2:1]输出为a,b,c,d,真实值很显然就是0.16,0.36,0.64,1,然后通过误差对比来评价;后者是不知道真实输出的,只能用预测输出,例如对股票预测。

什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。